

A Decentralised Neural Model Explaining Optimal Integration Of Navigational Strategies in Insects

Xuelong Sun, Michael Mangan, Shigang Yue

University of Lincoln, UK

Frequency encoding of panoramic skylines

Skyline silhouette is sufficient for place recognition (Stone et al, 2014)

Complex signal can be decomposed into a series of trigonometric functions

Summing increasing basis functions gives approximation of original signal

Features of frequency encoding panoramic skylines

1.Compression (like jpegs)

2. Encoding of <u>rotationally invariant</u> magnitudes and <u>rotationally varying</u> phases

Central Complex (CX)

Mushroom body (MB)

Ants

Model

Wystrach et.al 2012

ANN to link the magnitudes with phase of memorized images sampled along the route

Ants

Model

Using **threshold** of the visual novelty to switch

Coordination model

- 1. Frequency encoding of views allow both visual homing and route following
- 2. Optimal integration happens in the CX via a ring attractor circuit
- 3. A context dependent switch allows the transition from off route to on route strategy

Thanks

Xuelong Sun xsun@lincoln.ac.uk

Sincere apologies for that I cannot do the presentation in person.

In any case that I haven't make everything clear:

What we want to address is:

In the field of **insect navigation**, there are good models of PI and RF, **but there is no model for VH**, and similarly there is no model to co-ordinate them.

What you can learn from this talk are:

1. That frequency encoding of views allows rotational invariant information to be separated from place recognition information allows both VH and RF to function separately.

- 2. Insects have the correct type of neural circuits for VH (MB) and RF (AOTU), and PI (CX with steering)
- 3. Ring attractors are the perfect mechanism to optimally integrate these systems
- 4. Context-dependent switches are the last component that give us the full model.

If you are interesting in our research, please refer to the paper. <u>https://www.biorxiv.org/content/10.1101/856153v2</u>

Feel free to contact me, xsun@lincoln.ac.uk